Search results for "Quantum affine algebra"
showing 6 items of 6 documents
Kac-Moody group representations and generalization of the Sugawara construction of the Virasoro algebra
1988
We discuss the dynamical structure of the semidirect product of the Virasoro and affine Kac-Moody groups within the framework of a group quantization formalism. This formalism provides a realization of the Virasoro algebra acting on Kac-Moody Fock states which generalizes the Sugawara construction. We also give an explicit construction of the standard Kac-Moody group representations associated with strings on SU(2) and recover, in particular, the ‘renormalization’ β factor of L(z)
Quantum and Braided Integrals
2001
We give a pedagogical introduction to integration techniques appropriate for non-commutative spaces while presenting some new results as well. A rather detailed discussion outlines the motivation for adopting the Hopf algebra language. We then present some trace formulas for the integral on Hopf algebras and show how to treat the $\int 1=0$ case. We extend the discussion to braided Hopf algebras relying on diagrammatic techniques. The use of the general formulas is illustrated by explicitly worked out examples.
Representations of Affine Kac-Moody Algebras
1989
In the first chapter we explained how simple finite-dimensional Lie algebras can be completely characterized in terms of their Cartan matrices or Dynkin diagrams. The same holds for an arbitrary semisim-ple finite-dimensional Lie algebra. A semisimple Lie algebra is a direct sum of simple ideals which are pairwise orthogonal with respect to the Killing form. It follows that the Cartan matrix of a semisimple Lie algebra decomposes to a block diagonal form, each block representing a simple ideal. Similarly, the Dynkin diagram is a disconnected union of Dynkin diagrams of simple Lie algebras. Next we shall study certain infinite-dimensional Lie algebras which have many similarities with the si…
The new results on lattice deformation of current algebra
2008
The topic “Quantum Integrable Models” was reviewed in the literature and presented to the conferences and schools many times. Only the reports of our own have been done on quite a few occasions (see, e.g., [1], [2]). So here we shall try to present a fresh approach to the description of the ingredients of construction of integrable models. It has gradually evolved in the process of our joint work. Whereas our goal was the Sugawara construction for the lattice affine algebra (known now as the St.Petersburg algebra), (see, e.g., [1]), some technical developments happen to be new and useful for the already developed subjects. Here we shall underline this development.
Affine Kettengeometrien �ber Jordanalgebren
1996
It is shown that an affine chain geometry over a Jordan algebra can be constructed in a nearly classical manner. Conversely, such chain geometries are characterized as systems of rational normal curves having a group of automorphisms with certain properties.
The Bohm-Aharonov effect: A seven-dimensional structural group
1996
We realize a nonfaithful representation of a seven-dimensional Lie algebra, the extension of which to its universal enveloping algebra contains most of the observables of the scattering Aharonov-Bohm effect, as essentially self-adjoint operators: the scattering Hamiltonian, the total and kinetic angular momenta, the positions and the kinetic momenta. By restriction, we obtain the model introduced in Lett. Math. Phys.1 (1976), 155–163.